

ORIENT

Photo coupler

Product Data Sheet

MPN:	OR-4N2X OR-4N3X series
Customore	_
Customer:	
Date:	

SHENZHEN ORIENT COMPONENTS CO., LTD

Block A3rd Floor No.4 Building, Tian'an Cyber Park, Huangge Rd, Long Gang Dist, Shenzhen, GD

TEL: 0755-29681816 FAX: 0755-29681200 www.orient-opto.com

Preliminary

This datasheet is a preliminary design specification, and the formal specifications are

1. Features

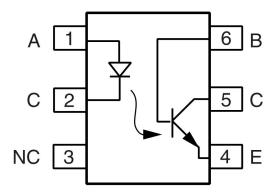
- (1) 4N2X series: 4N25, 4N26, 4N27, 4N28; 4N3X series: 4N35, 4N36, 4N37, 4N38
- (2) High isolation voltage between input and output (Viso=5000 V rms)
- (3) Creepage distance >7.62 mm
- (4) Operating temperature -55°C~110°C
- (5) Compact dual-in-line package
- (6) ESD pass HBM 8000V/MM 2000V
- (7) Safety approval

UL approved(No.E323844)

VDE approved(No.40029733)

CQC approved (No.CQC19001231480)

- (8) In compliance with RoHS, REACH standards.
- (9) MSL Class I


2. Instructions

The 4N2X, 4N3X, series of devices each consist of an infrared emitting diode optically coupled to a photo transistor. They are packaged in a 6-pin DIP package and available in wide-lead spacing and SMD option.

3. Application Range

- (1) Power supply regulators
- (2) Digital logic inputs
- (3) Microprocessor inputs

4. Functional Diagram

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Emitter
- 5. Collector
- 6. Base

5. Max Absolute rated Value (Normal Temperature=25°C)

	Parameter	Symbol	Rated Value	Unit
	Forward Current		60	mA
	Junction Temperature	T_{J}	125	°C
Input	Reverse Voltage	V_R	6	V
	Power dissipation (T A = 25°C)	D	100	mW
	Derating factor (above 100°C)	P_{D}	3.8	mW/°C
	Collector-emitter Voltage	V _{CEO}	80	V
	Collector-Base voltage	V_{CBO}	80	V
	Emitter-Collector voltage	V _{ECO}	7	V
Output	Emitter-Base voltage	V_{EBO}	7	V
	Collector Current	Ic	100	mA
	Power dissipation (T A = 25°C) Derating factor (above 100°C)		300	mW
				9.0
	Total Consume Power		350	mW
*1 Insulation Voltage		V _{iso}	5000	Vrms
Operation Temperature		T_{opr}	-55 to + 110	°C
	Storage Temperature		-55 to + 125	°C
*2 Soldering Temperature		T _{SOL}	260	°C

^{*1.} AC Test, 1 minute, humidity = $40\sim60\%$ Insulation test method as below:

⁽¹⁾ Short circuit both terminals of photocoupler.

⁽²⁾ No Current when testing insulation voltage.

⁽³⁾ Adding sine wave voltage when testing

^{*2.} soldering time is 10 seconds.

6. Opto-electronic Characteristics

Parameter		Symbol	Min	Typ.*	Max	Unit	Condition	
	Forward Voltage		V _F		1.2	1.5	V	I _F =10mA
Input Reve		e Current	I_R			10	μΑ	V _R =6V
	Collector	capacitance	Cin		30		pF	V=0, f=1MHz
	Collector-Ba	se dark current	I_{CBO}			20	nA	V _{CB} =10V
	Collector to	4N2X				50		V _{CE} =10V, I _F =0mA
	emitter Current	4N3X	I _{CEO}			50	nA	V _{CE} = 60V, IF=0mA
Output	Collector-Emitter	attenuation Voltage	BV _{CEO}	80			V	I _C =1mA
	Collector-Base bre	akdown voltage	BV _{CBO}	80				I _C =0.1mA
	Emitter-Collector attenuation Voltage		BV_{ECO}	7			V	$I_E=0.1$ mA
	Emitter-Base breakdown voltage		BV _{EBO}	7				I _E =0.1mA
	Current Transfer ratio	4N35, 4N36,4N37	100 CTR 20	100				
		4N25, 4N26,4N38		20			%	IF=10mA VCE=10V
		4N27, 4N28		10				
		4N25, 4N26,4N27, 4N28				0.5		I _F =50mA I _C =2mA
Transforming	Collector and Emitter Saturation Voltage	4N35, 4N36,4N37	V _{CE(sat)}			0.3	V	$I_F=10\text{mA},$ $I_C=0.5\text{mA}$
Characteristics		4N38				1.0		I_F =20mA, I_C =4mA
	Isolation resistance		Riso	1011			Ω	DC500V 40~60%R.H.
	Floating Capacitance		C_{f}		0.2		pF	V=0, f=1MHz
	Rise Time		$t_{\rm r}$		3	10	μs	V _{CC} =10V, I _C =10mA
	Fall Time		$t_{ m f}$		6	10	μs	$R_L=100\Omega$

• Current Conversion Ratio = $I_C / I_F \times 100\%$

7. Order Information

Part Number

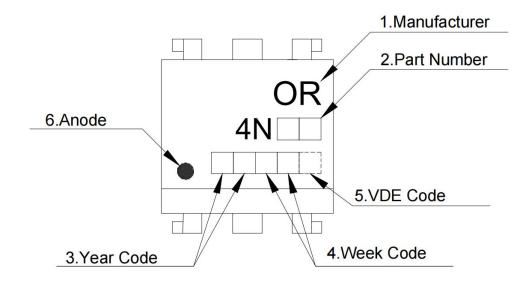
OR-4NXXU-Y-Z

Note

4NXX = Part Number, 4N25,4N26,4N27,4N28,4N35,4N36,4N37 or 4N38.

U = Lead form option (S, M or None)

Y = Tape and reel option (TA,TA1 or none).


Z = 'V' code for VDE safety (This options is not necessary).

Option	Description	Packing quantity
None	Standard DIP-6	66 units per tube
М	Wide lead bend (0.4 inch spacing)	66 units per tube
S(TA)	Surface mount lead form (low profile) + TA tape & reel option	1000 units per reel
S(TA1)	Surface mount lead form (low profile) + TA1 tape & reel option	1000 units per reel

^{*} VDE Code can be selected.

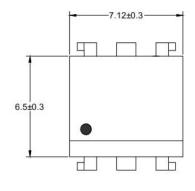
8. Naming Rule

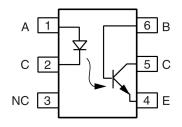
1. Manufacturer: ORIENT.

2. Part Number: 4N25,4N26,4N27,4N28,4N35,4N36,4N37 or 4N38.

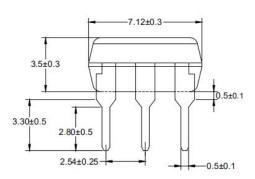
3. Year Code : '21' means '2021' and so on.

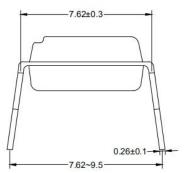
4. Week Code : 01 means the first week, 02 means the second week and so on.

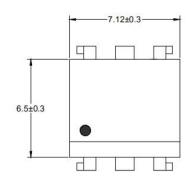

5. VDE Code [...]. (Optional)

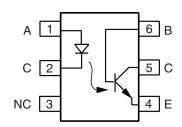

6. Anode.

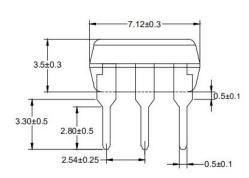
9. Outer Dimension

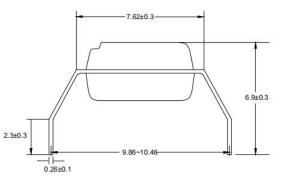

(1) **OR-4NXX**



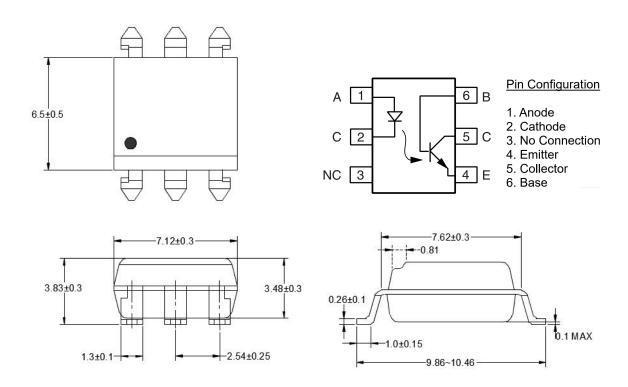

Pin Configuration

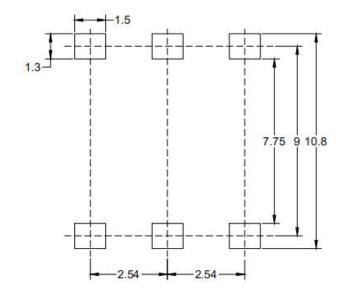

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Emitter
- 5. Collector
- 6. Base


(2) OR-4NXXM



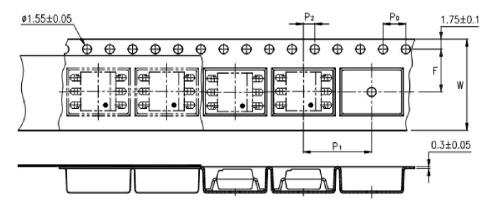
Pin Configuration


- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Emitter
- 5. Collector
- 6. Base

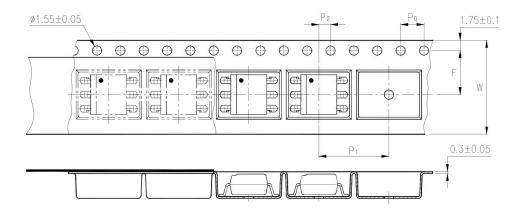


(3) OR-4NXXS

10. Recommended Foot Print Patterns (Mount Pad)



unit: mm



11. Taping Dimensions

(1) OR-4NXXS-TA

(2) OR-4NXXS-TA1

Description	Symbol	Dimension in mm(inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	Р0	4±0.1 (0.15)
Distance of comments out	F	7.5±0.1 (0.295)
Distance of compartment	P2	2±0.1 (0.079)
Distance of compartment to compartment	P1	12±0.1 (0.472)

Package Type	TA/TA1
Quantities(pcs)	1000

12. Package Dimension

(1) package dimension

DIP/M type

Packing Information			
Packing type	Tube		
Qty per Tube	66pcs		
Small box (Inner) Dimension	525*128*60mm		
Large box (Outer) Dimension	545*290*335mm		
The Amount per Inner Box	3,300pcs		
The Amount per Outer Box	33,000pcs		

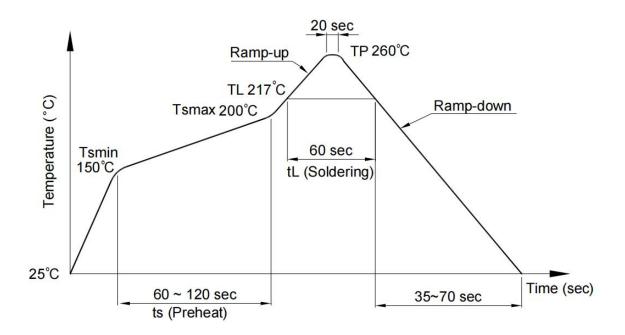
SOP type

Packing Information			
Packing type	Reel type		
Tape Width	16mm		
Qty per Reel	1,000pcs		
Small box (inner) Dimension	345*345*58.5mm		
Large box (Outer) Dimension	620x360x360mm		
Max qty per small box	2,000pcs		
Max qty per large box	20,000pcs		

(2) Packing Label Sample

Note:

- 1. Material Code: Product ID.
- 2.P/N :Contents with "Order Information" in the specification.
- 3. Lot No.: Product weeks.
- 4.D/C: Product data.
- 5. Quantity: Packaging quantity.

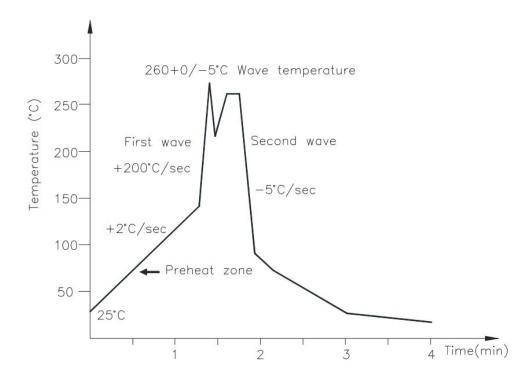


13. Temperature Profile Of Soldering

(1) IR Reflow soldering (JEDEC-STD-020 compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T Smin)	150°C
- Temperature Max (T Smax)	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (TL)	217°C
- Time (t L)	60 sec
Peak Temperature	260°C
Peak Temperature time	20 sec
Ramp-up rate	3°C / sec max.
Ramp-down rate from peak temperature	3~6°C / sec
Reflow times	≤3



(2) Wave soldering (JEDEC22 A111 compliant)

One time soldering is recommended within the condition of temperature.

Temperature	260+0/-5°C
Time	10 sec
Preheat temperature	25 to 140°C
Preheat time	30 to 80 sec

(3) Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature	380+0/-5°C
Time	3 sec max

14. Characteristics Curves

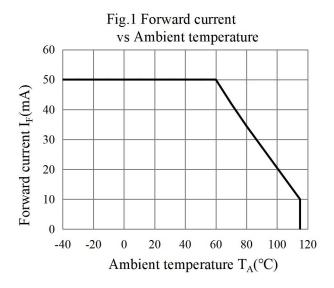


Fig.3 Forward Current vs. Forward Voltage 256 128 Forward current I_F (mA) 64 $T_A=110$ °C 32 $T_A=80$ °C 16 $T_A=25$ °C 8 $=0^{\circ}C$ $= -40^{\circ}$ 1 1.20 0.60 0.80 1.00 1.40 1.60 1.80 Forward voltage $V_F(V)$

fig.5 Collector Current vs. Non-Saturated Collector Emitter Voltage T_A=25°C Collector current I_C(mA) 40 30 Pc(MAX) 20 5mA 10 1mA 6 10

 $V_{\text{CE(non-sat)}}$ - Non-Saturated Collector Emitter Voltage

Fig.2 Collector Power Dissipation vs. Ambient temperature 200 Collector Power Dissipation (mW) 180 160 140 120 100 80 60 40 20 -20 20 40 60 -40 80 100 120 Ambient temperature $T_A(^{\circ}C)$

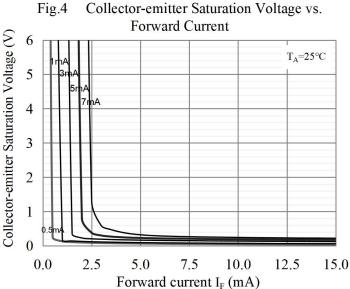


fig.6 Collector Current vs. Non-Saturated Collector Emitter Voltage

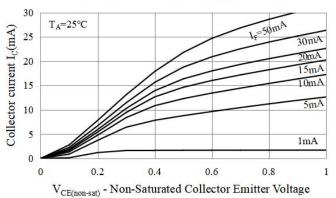


Fig.7 Relative Current Transfer Ratio vs.
Ambient Temperature

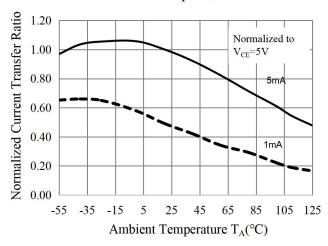


Fig.8 Relative Current Transfer Ratio vs.
Ambient Temperature

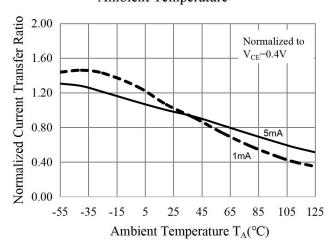


Fig.9 Forward Current vs.

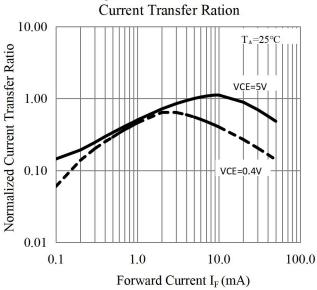


Fig.10 Collector Dark Current vs.
Ambient Temperature

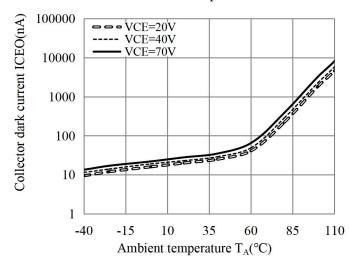


Fig.11 Collector-emitter Saturation Voltage vs. Ambient Temperature

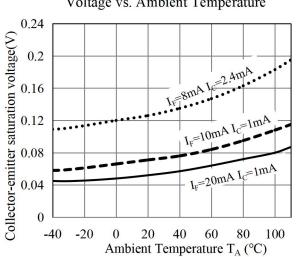
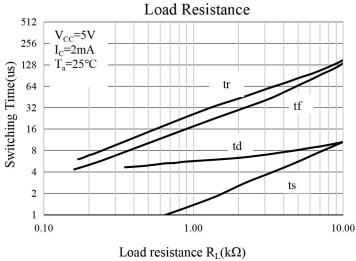



Fig.12 Switching Time vs.

V6

Fig.13 Respinse Time vs. Ambient temperature

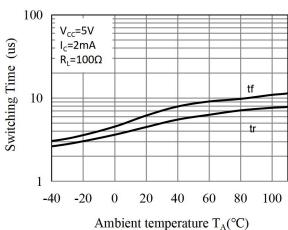
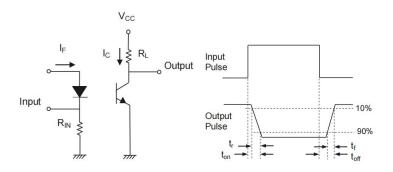



Fig.14 Switching Time Test Circuit & Waveforms

15. NOTES

- 1. Orient is continually improving the quality, reliability, function or design and Orient reserves the right to make changes without further notices.
- 2. The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- 3. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- 4. When requiring a device for any "specific" application, please contact our sales in advice.
- 5. If there are any questions about the contents of this publication, please contact us at your convenience.
- 6. The contents described herein are subject to change without prior notice.
- 7. Immerge unit's body in solder paste is not recommended.