

ORIENT

Photo coupler Product

Data Sheet

MPN: _	OR-10XX series
Customer: _	
Data	
Date: _	

SHENZHEN ORIENT COMPONENTS CO., LTD

Block A 3rd Floor No.4 Building, Tian'an Cyber Park, Huangge Rd, Long Gang Dist, Shenzhen, GD

TEL: 0755-29681816 FAX: 0755-29681200 www.orient-opto.com

Preliminary

This datasheet is a preliminary design specification, and the formal specifications are subject to the recognition letter with jointly signed

1. Features

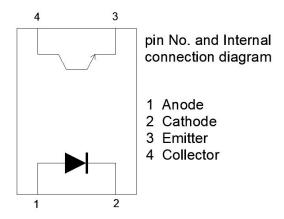
- (1) Current transfer ratio: (CTR: $50\sim600\%$ at $I_F = 5mA$, $V_{CE} = 5V$)
- (2) High input-output isolation voltage ($V_{iso} = 5,000 \text{Vrms}$)
- (3) High collector-emitter voltage ($V_{CEO} = 80V$)
- (4) Temperature range -55°C to 110°C
- (5) Creepage distance > 8mm
- (6) Employs double transfer mold technology
- (7) Long Mini-flat package: 2.3mm profile: OR-10XX series
- (8) ESD pass HBM 8000V/MM 2000V
- (9) Safety approval

UL approved(No.E323844)

VDE approved(No.40029733)

CQC approved (No.CQC18001190940)

- (10) In compliance with RoHS, REACH standards
- (11) MSL Class I


2. Description

The OR-10XX series devices consist of an infrared emitting diode, optically coupled to a photo transistor detector. They are packaged in a 4-pin SOP package.

3. Applications

- (1) Programmable controllers
- (2) System appliances, measuring instruments
- (3) Telecommunication equipments
- (4) Home appliances, such as fan heaters, etc.
- (5) Signal transmission between circuits of different potentials and impedances

4. Functional Diagram

5. Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rated Value	Unit
	Forward Current	I_{F}	60	mA
.	Junction Temperature	TJ	125	°C
Input	Reverse Voltage	V_R	6	V
	Consume Power	P	100	mW
	Collector and emitter Voltage	V _{CEO}	80	
	Emitter and collector Voltage	V _{ECO}	7	V
Output	Collector Current	Ic	50	mA
	Consume Power	Pc	150	mW
	Total Consume Power	P _{tot}	250	mW
	*1 Insulation Voltage	V _{ISO}	5000	$ m V_{rms}$
*2 Ma	aximum transient isolation voltage	V _{IOTM}	8000	V _{peak}
	Tracking resistance	CTI	175	V
	Operation Temperature		-55 to + 110	
	Storage Temperature		-55 to + 125	°C
ķ	*3 Soldering Temperature		260	

Notes:

^{*1} AC for 1 minute, R.H.= $40 \sim 60\%$ R.H. In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together.

^{*2} With VDE testing condition

^{*3} For 10 seconds

6. Electrical Optical Characteristics at Ta=25°C

	Parameter	Symbol	Min	Тур.*	Max	Unit	Condition
	Forward Voltage	V _F		1.25	1.6	V	I _F =50mA
Input	Reverse Current	I_R			5	μΑ	V _R =5V
	Collector capacitance	Ct		50		pF	V=0, f=1MHz
	Collector to emitter Current	I_{CEO}		10	100	nA	V _{CE} =20V, I _F =0mA
Output	Collector and Emitter Breakdown Voltage	BVCEO	80			V	I _C =1mA I _F =0mA
	Emitter and Collector Breakdown Voltage	BVECO	7			V	I _E =0.1mA I _F =0mA
	*1 Current conversion ratio	CTR	50		600	%	IF=5mA
	Collector Current	I_{C}	2.5		30	mA	VCE=5V
	Collector and Emitter Saturation Voltage	V _{CE(sat)}			0.3	V	I _F =10mA I _C = 1mA
Transforming Characteristics	Insulation Impedance	Riso	1012			Ω	DC500V 40~60%R.H.
	Floating Capacitance	C_{f}		0.3		pF	V=0, f=1MHz
	Rise Time	$t_{ m r}$		3	18	μs	V _{CC} =5V,
	Fall Time	\mathbf{t}_{f}		4.7	18	μs	I_{C} =2mA R_{L} =100 Ω

^{*1} Current Conversion Ratio = I_C / $I_F \times 100\%$, CTR Tolerance: $\pm 3\%$.

7. Rank Table of Current Transfer Ratio

CTR Rank	Min.	Max.	Condition	Unit
OR-1000	50	600	IF=5mA, V _{CE} =5V, Ta=25°C	
OK-1000	20	400	IF=1mA, V _{CE} =5V, Ta=25°C	
OP 1001	100	160	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1001	40	100	IF=1mA, V _{CE} =5V, Ta=25°C	
OR 1004	100	200	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1004	40	150	IF=1mA, V _{CE} =5V, Ta=25°C	
OP 1005	50	150	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1005	20	90	IF=1mA, V _{CE} =5V, Ta=25°C	
OR 1006	100	300	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1006	40	250	IF=1mA, V _{CE} =5V, Ta=25°C	
OR 1007	80	160	IF=5mA, V _{CE} =5V, Ta=25°C	0/
OR-1007	30	100	IF=1mA, V _{CE} =5V, Ta=25°C	- %
OR 1000	130	260	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1008	50	180	IF=1mA, V _{CE} =5V, Ta=25°C	
OR 1000	200	400	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1009	80	300	IF=1mA, V _{CE} =5V, Ta=25°C	
OP 1010	150	300	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1010	60	200	IF=1mA, V _{CE} =5V, Ta=25°C	
OP 1010	300	500	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1019	120	350	IF=1mA, V _{CE} =5V, Ta=25°C	
OR 1020	300	450	IF=5mA, V _{CE} =5V, Ta=25°C	
OR-1020	120	300	IF=1mA, V _{CE} =5V, Ta=25°C	
OR-1002	22	_		
OR-1003	34	_		
OR-1014	56	_	IF=1mA, V _{CE} =5V, Ta=25°C	%
OR-1015	63	125		
OR-1018	100	200		
OR-1002	63	125		
OR-1003	100	200	IF=10mA, V _{CE} =5V, Ta=25°C	
OR-1014	160	320		

8. Order Information

Part Number

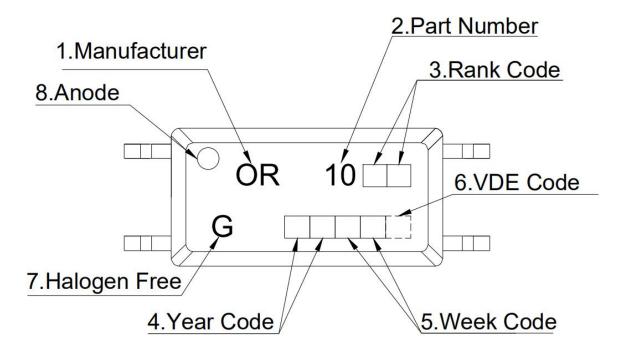
OR-10XX-W-Y-Z

Note

XX = CTR Rank (00, 01,02,03...18,19,20.)

W = Tape and reel option (TP or TP1).

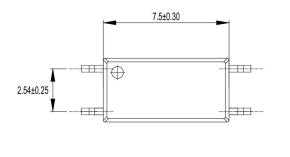
Y = 'V' code for VDE safety (This options is not necessary).

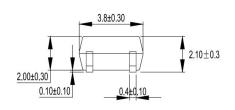

Z = 'G' code for Halogen free.

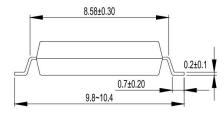
* VDE Code can be selected.

Option	Description	Packing quantity
TP	Surface mount lead form (low profile) + TP tape & reel option	3000 units per reel
TP1	Surface mount lead form (low profile) + TP1 tape & reel option	3000 units per reel

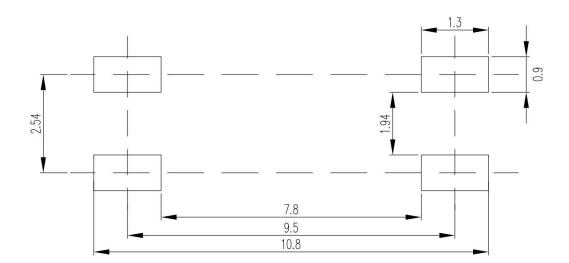
9. Naming Rule



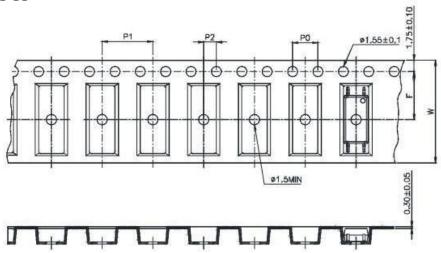

- 1. Manufacturer: ORIENT.
- 2. Part Number: 10XX.
- 3. Rank Code : CTR Rank
- 4. Year Code : '21' means '2021' and so on.
- 5. Week Code : 01 means the first week, 02 means the second week and so on.
- 6. VDE Code [...]. (Optional)
- 7. HF Code 'G': Halogen Free.
- 8. Anode.

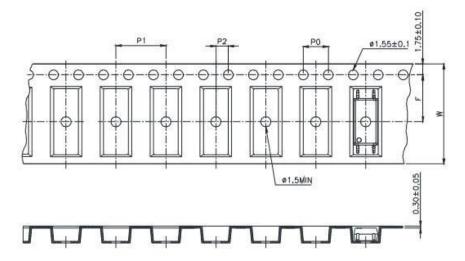

^{*} VDE Mark can be selected.

10.Package Dimension



11.RRECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)


Unit:mm



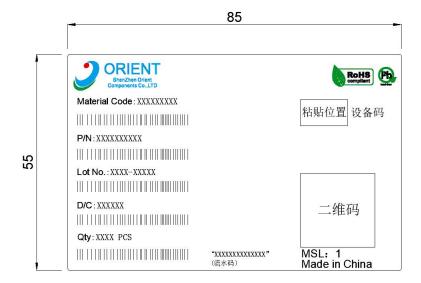
12. Taping Dimensions

(1) OR-10XX-TP

(2) OR-10XX-TP1

Description	Symbol	Dimension in mm (inch)
Tape wide	W	16±0.3 (0.63)
Pitch of sprocket holes	P_0	4±0.3 (0.15)
Distance of compartment	F	7.5±0.1 (0.295)
Distance of compartment	P2	2±0.1 (0.079)
Distance of compartment to compartment	P1	8±0.1 (0.315)

Package Type	TP/TP1
Quantities(pcs)	3000



13.Package Dimension

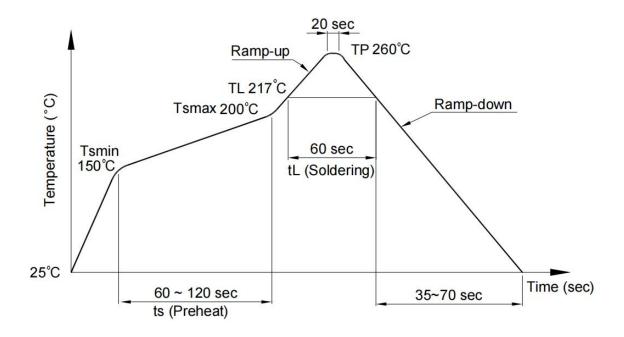
(1) package dimension

Packing Information			
Packing type	Reel type		
Tape Width	16mm		
Qty per Reel	3,000pcs		
Small box (inner) Dimension	345*345*58.5mm		
Large box (Outer) Dimension	620x360x360mm		
Max qty per small box	6,000pcs		
Max qty per large box	60,000pcs		

(2)Packing Label Sample

Note:

- 1. Material Code :Product ID.
- 2. P/N :Contents with "Order Information" in the specification.
- 3. Lot No.: Product weeks.
- 4. D/C :Product data.
- 5. Quantity: Packaging quantity.

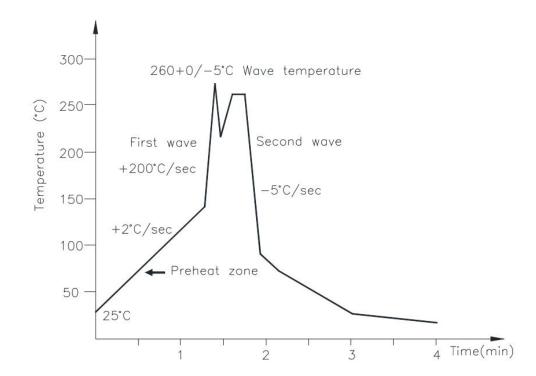


14. Temperature Profile Of Soldering

(1) IR Reflow soldering (JEDEC-STD-020 compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times.

Profile item	Conditions
Preheat	
- Temperature Min (T Smin)	150°C
- Temperature Max (T Smax)	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (TL)	217°C
- Time (t L)	60 sec
Peak Temperature	260°C
Peak Temperature time	20 sec
Ramp-up rate	3°C / sec max.
Ramp-down rate from peak temperature	3~6°C / sec
Reflow times	≤3



(2) Wave soldering (JEDEC22 A111 compliant)

One time soldering is recommended within the condition of temperature.

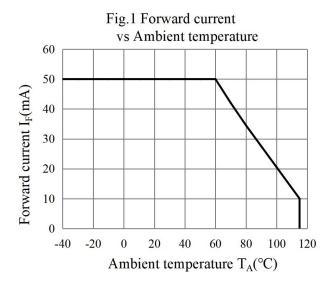
Temperature	260+0/-5°C
Time	10 sec
Preheat temperature	25 to 140°C
Preheat time	30 to 80 sec

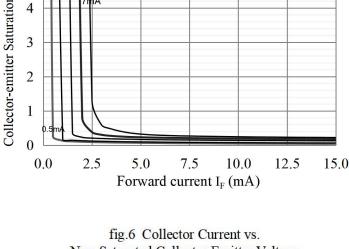
(3) Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature	380+0/-5°C
Time	3 sec max

15. Characteristics Curves





Fig.3 Forward Current vs. Forward Voltage 256 128 Forward current I_F (mA) 64 $T_A=1|10^{\circ}C$ 32 16 $T_A=25^{\circ}C$ $T_A = 0$ °C 4 $T_{\Delta} = -40$ °C 2 1 0.80 0.60 1.00 1.20 1.40 1.60 1.80 Forward voltage $V_F(V)$

Collector current I_c(mA) 40 30 Pc(MAX) 20 5mA 10 1mA0 10 $V_{CE(non\text{-sat})}$ - Non-Saturated Collector Emitter Voltage

fig.5 Collector Current vs. Non-Saturated Collector Emitter Voltage

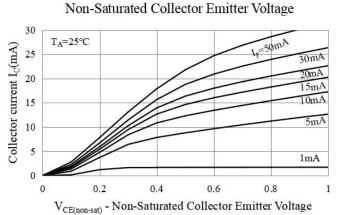


Fig.7 Relative Current Transfer Ratio vs.
Ambient Temperature

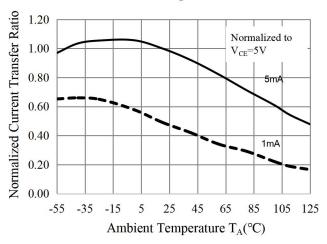


Fig.9 Forward Current vs.

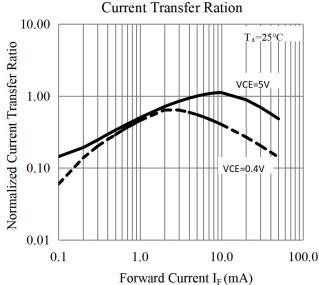


Fig.11 Collector-emitter Saturation Voltage vs. Ambient Temperature

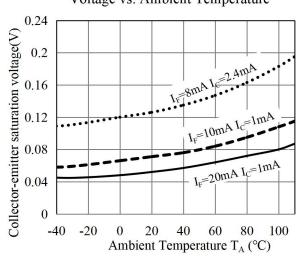


Fig.8 Relative Current Transfer Ratio vs.
Ambient Temperature

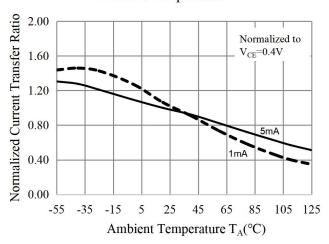


Fig.10 Collector Dark Current vs.
Ambient Temperature

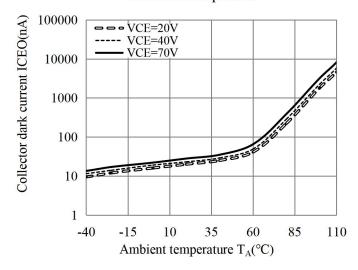


Fig.12 Switching Time vs.

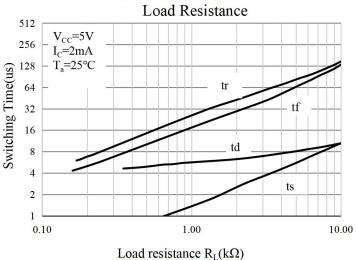


Fig.13 Respinse Time vs. Ambient temperature

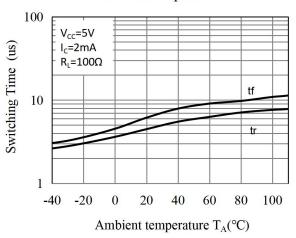
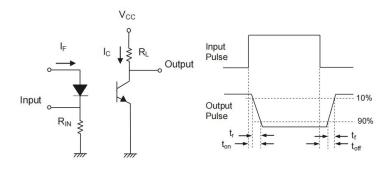



Fig.14 Switching Time Test Circuit & Waveforms

16.NOTES

- 1. Orient is continually improving the quality, reliability, function or design and Orient reserves the right to make changes without further notices.
- 2. The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- 3. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- 4. When requiring a device for any "specific" application, please contact our sales in advice.
- 5. If there are any questions about the contents of this publication, please contact us at your convenience.
- 6. The contents described herein are subject to change without prior notice.
- 7. Immerge unit's body in solder paste is not recommended.