

ORIENT

Photo coupler

Product Data Sheet

MPN:	ORPC-847 series
Customer:	
Customer.	
Date:	

SHENZHEN ORIENT COMPONENTS CO., LTD

Block A 3rd Floor No.4 Building, Tian'an Cyber Park, Huangge Rd, Long Gang Dist, Shenzhen, GD TEL:

0755-29681816 FAX: 0755-29681200 www.orient-opto.com

Preliminary

This datasheet is a preliminary design specification, and the formal specifications are subject to the recognition letter with jointly signed

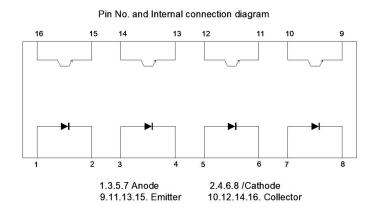
1. Features

- (1) Current conversion ratio
- (2) (Min 50% Working condition I_F=5mA, V_{CE}=5V)
- (3) Insulation Voltage = 5,000Vrms,
- (4) Response Time(tr: typ. 4 μ s; tf: TYP. 5 μ s at V_{CE}=2V, I_C=2mA, R_L=100 Ω)
- (5) ESD pass HBM 8000V/MM 2000V
- (6) Safety approval

UL approved (No.E323844)

VDE approved (No.40029733)

- (7) In compliance with RoHS, REACH standards
- (8) MSL Class I


2. Instructions

- (1) ORPC-847 series optical coupler consists of four GaAs transmitting tubes and four NPN transistors
- (2) Pin pitch of ORPC-847 is 2.54mm

3. Application Range

- (1) Switching power supply
- (2) Ammeter
- (3) Computer
- (4) Instrumental application, measurement machine
- (5) Imbursement equipments, duplicating machine, automat
- (6) Family-use electric equipments, such as fans
- (7) Signal transforming systems

4. Functional Diagram

5. Absolute Maximum Ratings (Ta=25°C)

	Parameter	Symbol	Rated Value	Unit
	Forward Current		60	mA
	Peak forward Current (100μs pulse, 100Hz frequency)	IFP	1	A
Input	Reverse Voltage	V_R	6	V
	Consume Power	P	70	mW
	Junction Temperature	T _j	125	°C
	Collector and emitter Voltage	Vceo	80	***
	Emitter and collector Voltage	VECO	7	V
Output	Collector Current	I_{C}	50	mA
	Consume Power		150	mW
Total Consume Power		Ptot	200	mW
*1 Insulation Voltage		Viso	5000	Vrms
Max	Maximum transient isolation voltage (Insulating oil test)		8000	V_{peak}
Maximum repetitive peak isolation voltage		Viorm	850	V_{peak}
	Operation Temperature		-55 to + 110	
Storage Temperature		Tstg	-55 to + 125	°C
*2 Soldering Temperature		Tsol	260	

^{*1.} AC Test, 1 minute, humidity = $40\sim60\%$

Isolation voltage shall be measured using the following method.

⁽¹⁾ Short between anode and cathode on the primary side and between collector and emitter on the secondary side.

⁽²⁾ The isolation voltage tester with zero-cross circuit shall be used.

⁽³⁾ The waveform of applied voltage shall be a sine wave.

^{*2.} soldering time is 10 seconds

6. Electrical optical characteristics at TA= 25° C

	Parameter	Symbol	Min	Typ.*	Max	Unit	Condition
Input	Forward Voltage	V_{F}		1.2	1.4	V	I _F =20mA
	Reverse Current	I_R			5	μΑ	V _R =5V
	Collector capacitance	Ct		30	250	pF	V=0, f=1KHz
	Collector to emitter Current	Iceo			100	nA	V _{CE} =20V, I _F =0mA
Output	Collector and Emitter Breakdown Voltage	BVCEO	80			V	I _C =0.1mA I _F =0mA
	Emitter and Collector Breakdown Voltage	BVECO	7			V	$I_{E}\!\!=\!\!0.01\text{mA}$ $I_{F}\!\!=\!\!0\text{mA}$
	*1Current conversion ratio	CTR	50		600	%	IF=5mA
	Collector Current	I_{C}	2.5		30	mA	VCE=5V
	Collector and Emitter Saturation Voltage	VCE(sat)		0.1	0.2	V	I _F =20mA I _C = 1mA
Transforming Characteristics	Insulation Impedance	Riso	5×10 ₁₀	1×10 ₁₂		Ω	DC500V 40~60%R.H.
	capacitance	$C_{ m f}$		0.6	1.0	pF	V=0, f=1MHz
	Transforming Frequency	f_{c}		80		kHz	V_{CE} =5V, I_{C} =2mA, R_{L} =100 Ω , -3dB
	Rise Time	$t_{\rm r}$		4	18	μs	$V_{CE}=2V,$ $I_{C}=2mA,$
	Fall Time	${ m t_f}$		3	18	μs	$R_L=100\Omega$

^{*1} Current Conversion Ratio = $I_C / I_F \times 100\%$

7. Rank table of current transfer ratio (CTR)

Grade Sign	Min (%)	Max (%)
ORPC-847 NO BIN	50	600
ORPC-847BC	130	400
ORPC-847CD	200	600
ORPC-847CD1	300	500

Note: Working condition: I_F=5mA, V_{CE}=5V, T_a=25°C

8. Order Information

Part Number

ORPC-847XV-W-Y-Z

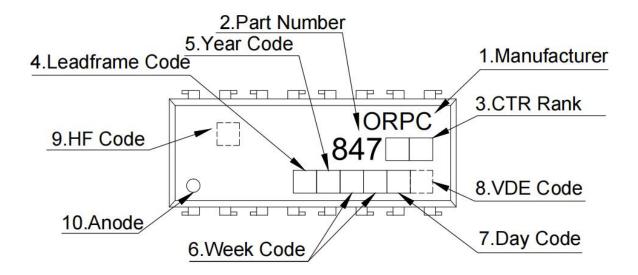
Note

X = Lead form option (S, M or none)

V = CTR Rank (BC, CD, CD1 or none)

W = Lead frame option (C:copper)

Y = 'V' code for VDE safety (This options is not necessary).


Z = 'G' code for Halogen free. (This options is not necessary).

^{*} VDE Code can be selected.

Option	Description	Packing quantity
None	Standard DIP-16	24 units per tube
M	Wide lead bend (0.4 inch spacing)	24 units per tube
S	Surface mount lead form (low profile)	24 units per tube

9. Naming Rule

(2) 847 denotes Part Number.

(3) CTR Rand .

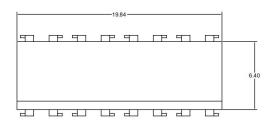
(4) Lead frame Code : 'C' means Copper.

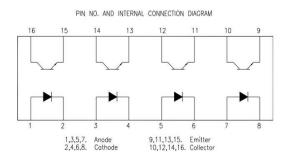
(5) Year Code : '1' means '2021' and so on.

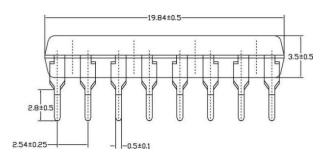
(6) Week Code ____: 01 means the first week, 02 means the second week and so on.

(7) Day Code : "A to G" means "Monday to Sunday"

(9) HF Code :: Halogen Free. (Optional)

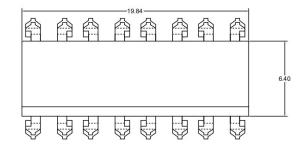

(10) Anode.

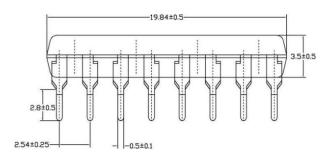

* VDE Mark can be selected.

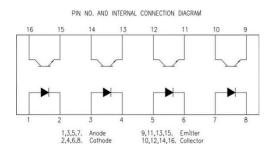


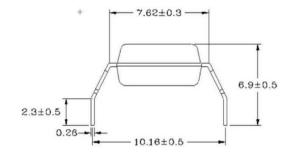
10. Outer Dimension (Unit: mm)

1. ORPC-847

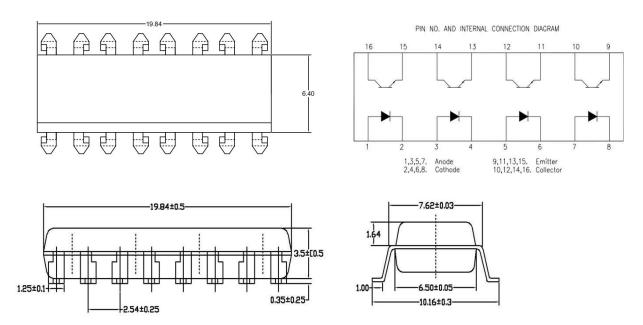


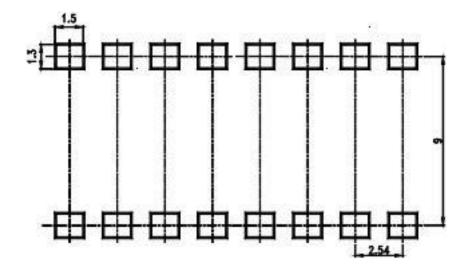






2.ORPC-847M





3.ORPC-847S

11. RECOMMENDED FOOT PRINT PATTERNS (MOUNT PAD)(Unit: mm)

12. Package Dimension

(1) package dimension


DIP Type

Packing Information			
Packing type	Tube		
Qty per Tube	24pcs		
Small box (Inner) Dimension	525*128*60mm		
Large box (Outer) Dimension	545*290*335mm		
The Amount per Inner Box	1,200pcs		
The Amount per Outer Box	12,000pcs		

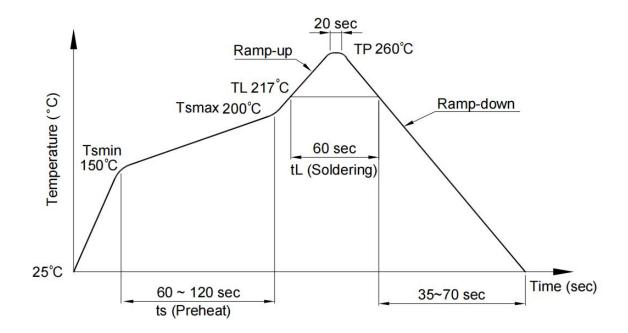
SOP Type

Packing Information			
Packing type	Tube		
Qty per Tube	24pcs		
Small box (Inner) Dimension	525*128*60mm		
Large box (Outer) Dimension	545*290*335mm		
The Amount per Inner Box	1,000pcs		
The Amount per Outer Box	10,000pcs		

(2)Packing Label Sample

Note:

- 1. Material Code: Product ID.
- 2. P/N :Contents with "Order Information" in the specification.
- 3. Lot No.: Product weeks.
- 4. D/C :Product data.
- 5. Quantity: Packaging quantity.

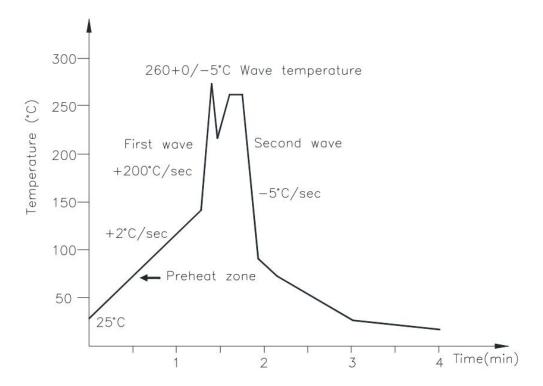


13. Temperature Profile Of Soldering

(1) IR Reflow soldering (JEDEC-STD-020C compliant)

One time soldering reflow is recommended within the condition of temperature and time profile shown below. Do not solder more than three times

Profile item	Conditions
Preheat	
- Temperature Min (T Smin)	150°C
- Temperature Max (T Smax)	200°C
- Time (min to max) (ts)	90±30 sec
Soldering zone	
- Temperature (TL)	217°C
- Time (t L)	60 sec
Peak Temperature	260°C
Peak Temperature time	20 sec
Ramp-up rate	3°C / sec max.
Ramp-down rate from peak temperature	3~6°C / sec
Reflow times	≤3



(2) Wave soldering (JEDEC22A111 compliant

One time soldering is recommended within the condition of temperature.

Temperature	260+0/-5°C
Time	10 sec
Preheat temperature	5 to 140°C
Preheat time	30 to 80 sec

(3) Hand soldering by soldering iron

Allow single lead soldering in every single process. One time soldering is recommended.

Temperature	380+0/-5°C
Time	3 sec max

14. Characteristics Curves

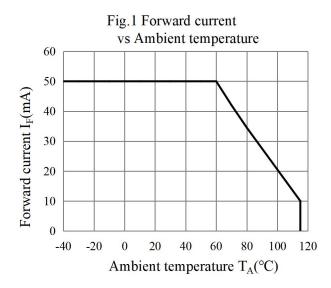
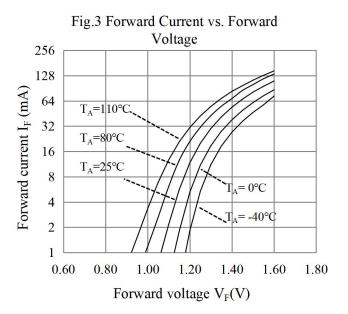
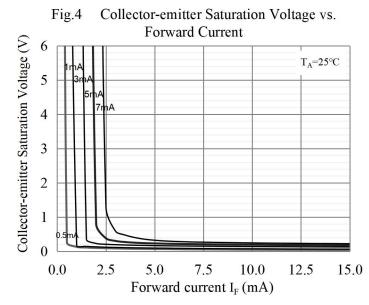




Fig.2 Collector Power Dissipation vs. Ambient temperature 200 Collector Power Dissipation (mW) 180 160 140 120 100 80 60 40 20 -20 20 40 60 100 -40 120 Ambient temperature $T_A(^{\circ}C)$

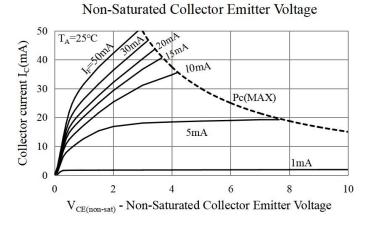


fig.5 Collector Current vs.

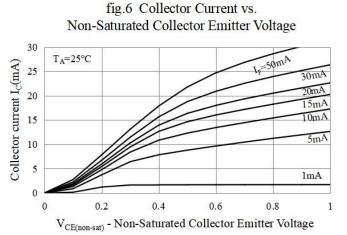


Fig.7 Relative Current Transfer Ratio vs.
Ambient Temperature

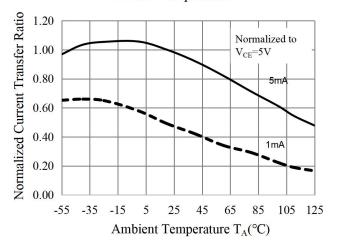


Fig.9 Forward Current vs.

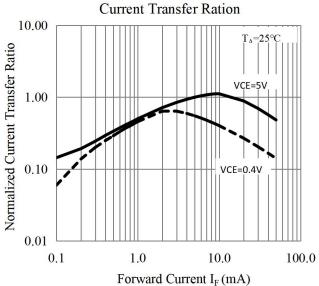


Fig.11 Collector-emitter Saturation Voltage vs. Ambient Temperature

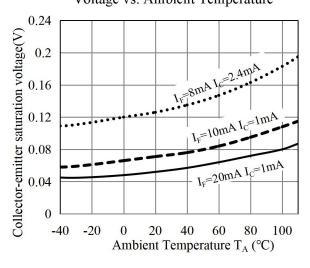


Fig.8 Relative Current Transfer Ratio vs.
Ambient Temperature

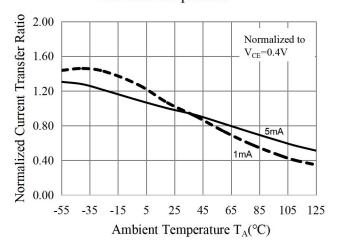


Fig.10 Collector Dark Current vs.
Ambient Temperature

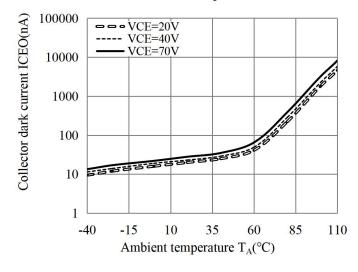
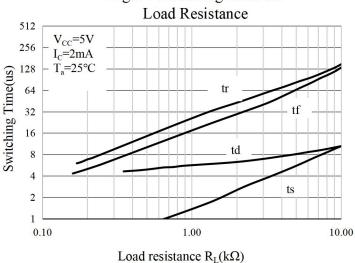
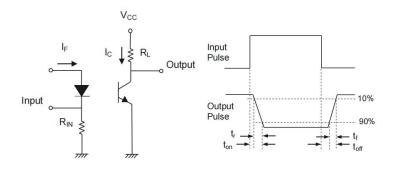



Fig.12 Switching Time vs.



Ambient temperature $V_{cc}=5V$ $I_{c}=2mA$ $R_{L}=100\Omega$ $I_{c}=100\Omega$

Fig.13 Respinse Time vs.

Fig.14 Switching Time Test Circuit & Waveforms

15. NOTES

-20

-40

0

20

40

Ambient temperature $T_A(^{\circ}C)$

60

100

80

Switching Time (us)

- 1. Orient is continually improving the quality, reliability, function or design and Orient reserves the right to make changes without further notices.
- 2. The products shown in this publication are designed for the general use in electronic applications such as office automation equipment, communications devices, audio/visual equipment, electrical application and instrumentation.
- 3. For equipment/devices where high reliability or safety is required, such as space applications, nuclear power control equipment, medical equipment, etc, please contact our sales representatives.
- 4. When requiring a device for any "specific" application, please contact our sales in advice.
- 5. If there are any questions about the contents of this publication, please contact us at your convenience.
- 6. The contents described herein are subject to change without prior notice.
- 7. Immerge unit's body in solder paste is not recommended.